New York Natural Heritage Program
Tiger Salamander
Ambystoma tigrinum (Green, 1825)
Amphibians

Threats [-]
Tiger salamanders experience many threats due to over-development and urbanization, particularly from activities such as draining and paving. Loss of breeding ponds, critical surrounding upland habitats, and connections between them are the most imminent threats. Loss of contiguous natural habitats causes populations to become isolated (Semlitsch 1998). New home development and road construction fragments habitats and results in groundwater drawdown, causing loss and degradation of breeding ponds. Salamander mortality is significant in areas with busy roads, especially on rainy nights, as salamanders migrate between uplands and breeding ponds (Clevenger et al. 2001). Road curbing and window wells can obstruct salamander dispersal. Breeding ponds also experience water quality reductions due to factors such as contamination, hydrological changes, introduction of predatory fish, introduction of pathogens, spread of invasive plants, and ATV use (Levy 2001; Lannoo 2005; NYSDEC 2005; Gibbs et al. 2007; NYSDEC 2010a; Titus and Zamudio 2010). Additionally, climate change is a potential threat to tiger salamanders on Long Island. The salamanders might be vulnerable to sea level rise, due to their confinement on the island and the existence of barriers inhibiting their dispersal. Collection is also a potential threat.

Conservation Strategies and Management Practices [-]
Currently, biologists are developing a recovery plan for tiger salamanders in New York. Management needs include the restoration of upland and wetland habitats particularly at sites that remain in a natural setting, prohibition of the introduction of fish into breeding ponds, removal of invasive species, and restriction of off-road vehicle use (NYSDEC 2005; Mitchell et al. 2006). Fish may need to be removed from some breeding ponds. The construction of salamander tunnels under roadways that are located between breeding ponds and upland habitats has been successful in several places throughout the country (Gibbs et al. 2007). Salamander tunnels should be constructed in appropriate situations whenever possible. Often this is most feasible when roads are being repaired. New roads should not be constructed between breeding ponds and upland habitats unless it is absolutely necessary. The use of seasonal road signs to alert motorists to watch for salamanders, temporary road closures, or reduced speed limits during salamander migration times may also be beneficial (Mitchell et al. 2006). Management plans should include governmental agencies, the public, and environmental consultants.

Development and Mitigation Considerations [-]
The tiger salamander is listed as an Endangered Species by New York State. In New York, it is illegal to harm, collect, or transport a tiger salamander, or harm critical habitat for the tiger salamander, without a permit issued by the New York State Department of Environmental Conservation (NYSDEC). Proposed projects that may impact tiger salamanders or their habitat must be designed so as to avoid, minimize, or mitigate detrimental impacts. Applicants should work with the appropriate regional NYSDEC office to determine if a permit is required and to plan the project to meet the requirements of any permit.

While guidelines and recommendations for specific project sites or activities, or requirements for a specific project to be approved by NYSDEC or by a municipality, cannot be provided here, there are some general approaches to consider. The guidelines described here are based on the best available science as of this writing, and therefore must be viewed as best attempts to provide useful recommendations. Such guidelines must be tailored to meet specific local conservation needs and the particular circumstances of the site.

As discussed in the Conservation Overview section above, research indicates that the protection of a zone with woodland habitat that extends 164 m (538 ft) from a pond edge is important for the persistence of the tiger salamander population in that pond. Based on this research, NYSDEC has developed, in the context of reviewing and approving development projects, Guidance for Land Cover Set Asides for Conservation of the Eastern Tiger Salamander and Suggested Methods to Avoid, Minimize, and Mitigate Impacts.

NYSDEC recommends that projects within 1,000 feet of known tiger salamander breeding ponds follow the following two guidelines. These guidelines ensure that developers are in compliance with the law and are minimizing negative impacts to tiger salamanders. First, preserve 100% of the existing upland forest habitat within 535 feet of the breeding pond; and second, preserve “a minimum of 50% of the adjacent upland area within 1,000 feet of breeding ponds in contiguous blocks of suitable habitat, while allowing for the preservation of wooded corridors which provide connections to adjacent tiger salamander upland habitats” (NYSDEC 2010b). Preserved areas should include as much oak-pine woodland as possible (the preferred habitat of the tiger salamander), and development should occur on existing disturbed areas whenever possible. Preserved areas typically should not be disturbed by activities such as grading, excavating, or clearing (NYSDEC 2010b).

In addition, NYSDEC requires that other actions be taken, as appropriate, when projects that may impact tiger salamanders are conducted. NYSDEC‘s guidance includes requirements regarding culverts under roadways, curbing, pools, created ponds, and window wells within 1,000 feet of salamander ponds; lighting, wells, and pesticides (including for mosquito control) in the vicinity of breeding ponds; and drainage into and management of the preserved upland areas (NYSDEC 2010b). For example, at least one culvert suitable for the passage of migrating tiger salamanders must be placed under the roadway for every 100 feet of new roadway within 1,000 feet of known breeding ponds.

Specific management recommendations for amphibian habitats can also be found in Best Development Practices: Conserving Pool-Breeding Amphibians in Residential and Commercial Developments in the Northeastern United States (Calhoun and Klemens, 2002). The authors recommend maintaining undeveloped forest habitat throughout the 100-foot area around a breeding pond, and maintaining or restoring at least 75% of the area between 100 and 750 feet from a pond in contiguous (unfragmented) forest with undisturbed ground cover. The information sheet VP Directional Buffer Guidance (Calhoun 2010) recommends the use of “directional buffers” as an alternative to circular buffers around a pond, at those sites where the most suitable upland habitat is not evenly distributed around the pond, and is especially helpful for clusters of breeding ponds. This more flexible approach often can reduce the amount of land potentially requiring protection from that of circular habitat models, and can be better tailored to individual landowner needs.

One potential mitigation method that might be considered in some situations to allow for both land development and the preservation of viable tiger salamander populations is translocation. There has been interest in the possibility of moving salamanders from areas likely to be impacted by development activities to protected areas (Madison and Titus 2009). There are concerns about this practice, however. Previous studies have shown that some species of amphibians and reptiles make unusual movements and experience unusual levels of mortality after they have been moved, and moving animals may negatively impact the animals themselves as well as resident animals in the area in which they are released (Titus 2007). One study on Long Island found that translocated tiger salamander adults emigrating from their new breeding pond moved towards their original wetland or made unusually long movements relative to resident salamanders (Madison and Farrand 1998), indicating that translocation might not be advisable as a mitigation option. Madison and Titus (2009) moved metamorph tiger salamanders on Long Island from two ponds to new ponds. In most cases, translocated individuals seemed to move to appropriate upland habitat rather than heading toward their original home ponds. However, individuals translocated to one of the ponds moved farther from the pond and for a longer total distance than the resident individuals. Despite some indications that they were possibly disoriented, within wooded areas they seemed to select similar microhabitats as residents and detect suitable refugia. However, since translocated individuals suffer high rates of mortality, further research and analysis is needed to better understand the ways in which translocation might be used successfully as a mitigation tool (Titus, pers. comm.)

Research Needs [-]
Since the early 1980s the NYSDEC has monitored tiger salamander breeding ponds on Long Island, and since the early 1990s the monitoring program has followed standardized protocols. However, a population viability study or trend analysis of the data has not yet been conducted. The standardized monitoring protocol allows for both an analysis of occupancy rates (using the computer program PRESENCE) and trends, as well as extinction/colonization rates. Furthermore, previous egg mass counts at breeding ponds also allow for abundance estimates, as egg mass counts have been used successfully to monitor abundance and document trends in other pond-breeding amphibian populations (Crouch and Paton 2000). A retrospective power analysis could be conducted to determine the magnitude of decline in abundance suffered by this population since monitoring began (see Corser 2001). Additional research needs include 1) determination of past and present genetic connectivity between tiger salamander breeding populations; 2) development of procedures to assess tiger salamander presence in upland areas; 3) determination of the effects of disease, invasive species, and current level of human development on the statewide population; 4) determination of effective management practices on public and private lands; and 5) determination of effective mitigation methods (Titus 2007).